如圖①梯形ABCD中AD∥BC,AB=3,BC=1,CD=2,BE⊥AD且BE=1,將梯形沿BE折疊得到圖②,使平面ABE⊥平面BCDE,CE與BD相交于O,點P在AB上,且AP=2PB,R是CD的中點,過O,P,R三點的平面交AC于Q.
(1)證明:Q是AC的中點;
(2)證明:AD⊥平面BEQ;
(3)M是AB上一點,已知二面角M-EC-B為45°,求AMAB的值.
3
CD
=
2
AM
AB
【考點】二面角的平面角及求法;直線與平面垂直.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:278引用:8難度:0.5
相似題
-
1.正四棱錐P-ABCD,底面四邊形ABCD為邊長為2的正方形,
,其內(nèi)切球為球G,平面α過AD與棱PB,PC分別交于點M,N,且與平面ABCD所成二面角為30°,則平面α截球G所得的圖形的面積為 .PA=5發(fā)布:2024/12/5 8:30:6組卷:159引用:4難度:0.5 -
2.如圖,在直三棱柱ABC-A1B1C1中,AA1=AC=4,AB=3,BC=5,點D是線段BC的中點.
(1)求證:AB⊥A1C;
(2)求二面角D-CA1-A的余弦值.發(fā)布:2024/11/30 13:0:1組卷:321引用:5難度:0.6 -
3.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是等邊三角形,CD⊥平面PAD,E,F(xiàn),G,O分別是PC,PD,BC,AD的中點.
(1)求證:PO⊥平面ABCD;
(2)求平面EFG與平面ABCD的夾角的大小;
(3)線段PA上是否存在點M,使得直線GM與平面EFG所成角為,若存在,求線段PM的長;若不存在,說明理由.π6發(fā)布:2024/12/7 16:30:5組卷:518引用:8難度:0.6
把好題分享給你的好友吧~~