如圖,拋物線y=-23x2+23x+4與坐標軸分別交于A,B,C三點,P是第一象限內(nèi)拋物線上的一點且橫坐標為m.
(1)A,B,C三點的坐標為 (-2,0)(-2,0),(3,0)(3,0),(0,4)(0,4).
(2)連接AP,交線段BC于點D,
①當CP與x軸平行時,求PDDA的值;
②當CP與x軸不平行時,求PDDA的最大值;
(3)連接CP,是否存在點P,使得∠BCO+2∠PCB=90°,若存在,求m的值,若不存在,請說明理由.
2
3
2
3
PD
DA
PD
DA
【考點】二次函數(shù)綜合題.
【答案】(-2,0);(3,0);(0,4)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:4373引用:11難度:0.2
相似題
-
1.如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)和B(3,0)兩點,與y軸交于點C,對稱軸與x軸交于點E,點D為頂點,連接BD、CD、BC.
(1)求二次函數(shù)解析式及頂點坐標;
(2)點P為線段BD上一點,若S△BCP=,求點P的坐標;32
(3)點M為拋物線上一點,作MN⊥CD,交直線CD于點N,若∠CMN=∠BDE,請直接寫出所有符合條件的點M的坐標.發(fā)布:2024/12/23 8:0:23組卷:1056引用:5難度:0.1 -
2.拋物線y=ax2+bx+3經(jīng)過點A、B、C,已知A(-1,0),B(3,0).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)如圖2,在(2)的條件下,延長DP交x軸于點F,M(m,0)是x軸上一動點,N是線段DF上一點,當△BDC的面積最大時,若∠MNC=90°,請直接寫出實數(shù)m的取值范圍.發(fā)布:2024/12/23 8:0:23組卷:731引用:4難度:0.5 -
3.如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-2,0)、B(8,0)兩點,與y軸交于點C(0,4),連接AC、BC.
(1)求拋物線的表達式;
(2)D為拋物線上第一象限內(nèi)一點,求△DCB面積的最大值;
(3)點P是拋物線上的一動點,當∠PCB=∠ABC時,求點P的坐標.發(fā)布:2024/12/23 8:0:23組卷:1668引用:8難度:0.1
把好題分享給你的好友吧~~