如圖,拋物線y=ax2+bx+c與x軸交于A,B兩點,點B的坐標為(2,0),拋物線與y軸交于點C(0,-22),對稱軸為直線x=-322,連接AC,過點B作BE∥AC交拋物線于點E.
(1)求拋物線的解析式;
(2)點P是線段AC下方拋物線上的一個動點,過點P作PF∥y軸交直線BE于點F,過點F作FD⊥AC交直線AC于點D,連接PD,求△FDP面積的最大值及此時點P的坐標;
(3)在第(2)小問的條件下,將原拋物線沿著射線CB方向平移,平移后的拋物線過點B,點M在平移后拋物線的對稱軸上,點T是平面內(nèi)任意一點,是否存在以B、P、M、T為頂點的四邊形是以BP為邊的菱形,若存在,直接寫出點T的坐標,若不存在,請說明理由.
(
2
,
0
)
2
x
=
-
3
2
2
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/23 8:0:8組卷:363引用:2難度:0.2
相似題
-
1.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3608引用:36難度:0.4 -
2.如圖,二次函數(shù)y=-x2+bx+c的圖象與x軸交于點A、B,與y軸交于點C.已知B(3,0),C(0,4),連接BC.
(1)b=,c=;
(2)點M為直線BC上方拋物線上一動點,當△MBC面積最大時,求點M的坐標;
(3)①點P在拋物線上,若△PAC是以AC為直角邊的直角三角形,求點P的橫坐標;
②在拋物線上是否存在一點Q,連接AC,使∠QBA=2∠ACO,若存在,直接寫出點Q的橫坐標;若不存在,請說明理由.發(fā)布:2024/12/23 11:0:1組卷:602引用:2難度:0.2 -
3.已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.14
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側(cè)圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1
把好題分享給你的好友吧~~