已知f(x)=x2-2ax-a,a∈R.
(1)判斷函數(shù)y=f(x)的奇偶性;
(2)令F(x)=x?f(x),若函數(shù)y=F(x)在x=2處有極值,且關(guān)于x的方程F(x)=m有3個(gè)不同的實(shí)根,求實(shí)數(shù)m的取值范圍;
(3)記g(x)=-ex(e是自然對(duì)數(shù)的底數(shù)),若對(duì)任意x1,x2∈[0,e]且x1>x2,均有|f(x1)-f(x2)|<|g(x1)-g(x2)|成立,求實(shí)數(shù)a的取值范圍.
【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的極值;函數(shù)的奇偶性.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/14 5:0:10組卷:65引用:2難度:0.2
相似題
-
1.已知函數(shù)f(x)=(x-a)lnx(a∈R),它的導(dǎo)函數(shù)為f'(x).
(1)當(dāng)a=1時(shí),求f'(x)的零點(diǎn);
(2)若函數(shù)f(x)存在極小值點(diǎn),求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數(shù)
有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為( ?。?/h2>f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:110引用:3難度:0.5 -
3.定義:設(shè)f'(x)是f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”且“拐點(diǎn)”就是三次函數(shù)圖像的對(duì)稱中心,已知函數(shù)
的對(duì)稱中心為(1,1),則下列說法中正確的有( )f(x)=ax3+bx2+53(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:151引用:6難度:0.5
把好題分享給你的好友吧~~