試卷征集
加入會員
操作視頻

菁優(yōu)網(wǎng)如圖,設(shè)P是x2+y2=8上的動點(diǎn),點(diǎn)D是點(diǎn)P在x軸上的投影,M點(diǎn)滿足
MD
=
λ
PD
(λ≠0).
(1)當(dāng)點(diǎn)P在圓上運(yùn)動時,求點(diǎn)M的軌跡C的方程;
(2)若
λ
=
1
2
,設(shè)點(diǎn)A(2,1),A關(guān)于原點(diǎn)的對稱點(diǎn)為B,直線l過點(diǎn)(1,
-
1
2
)且與曲線C交于點(diǎn)M和點(diǎn)N,設(shè)直線AM與直線BN交于點(diǎn)T,設(shè)直線AM的斜率為k1,直線BN的斜率為k2
(i)求證:
k
1
k
2
為定值;
(ii)求證:存在兩條定直線l1、l2,使得點(diǎn)T到直線l1、l2的距離之積為定值.

【考點(diǎn)】直線與圓錐曲線的綜合;軌跡方程
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/13 4:0:1組卷:135引用:4難度:0.4
相似題
  • 1.已知兩個定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對值等于2
    5

    (1)求曲線C的方程;
    (2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.

    發(fā)布:2024/12/29 10:30:1組卷:84引用:1難度:0.9
  • 2.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
    E
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    (a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).
    (Ⅰ)求雙曲線的離心率e;
    (Ⅱ)過點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且
    O
    P
    1
    ?
    O
    P
    2
    =
    -
    27
    4
    2
    P
    P
    1
    +
    P
    P
    2
    =
    0
    ,求雙曲線E的方程;
    (Ⅲ)若過點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且
    MQ
    =
    λ
    QN
    (λ為非零常數(shù)),問在x軸上是否存在定點(diǎn)G,使
    F
    1
    F
    2
    GM
    -
    λ
    GN
    ?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請說明理由.

    發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7
  • 3.若過點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個交點(diǎn),則這樣的直線有( ?。l.

    發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正