在線上教學中,教師和學生都學習到了新知識,掌握了許多新技能.例如教材八年級下冊的數(shù)學活動--折紙,就引起了許多同學的興趣.在經(jīng)歷圖形變換的過程中,進一步發(fā)展了同學們的空間觀念,積累了數(shù)學活動經(jīng)驗.
實踐發(fā)現(xiàn):
對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展平;再一次折疊;紙片,使點A落在EF上的點N處,并使折痕經(jīng)過點B,得到折痕BM,把紙片展平,連接AN,如圖①.
(1)折痕BM 是是(填“是”或“不是”)線段AN的垂直平分線;請判斷圖中△ABN是什么特殊三角形?答:等邊三角形等邊三角形;進一步計算出∠MNE=60°60°;
(2)繼續(xù)折疊紙片,使點A落在BC邊上的點H處,并使折痕經(jīng)過點B,得到折痕BG,把紙片展平,如圖②,則∠GBN=15°15°;
拓展延伸:
(3)如圖③,折疊矩形紙片ABCD,使點A落在BC邊上的點A'處,并且折痕交BC邊于點T,交AD邊于點S,把紙片展平,連接AA′交ST于點O,連接AT,SA′.求證:四邊形SATA′是菱形.
解決問題:
(4)如圖④,矩形紙片ABCD中,AB=10,AD=26,點S是邊AD上的一動點,折疊紙片,使點A落在BC邊上的點A′處,并且折痕過點S,交AB邊于點T,把紙片展平.同學們小組討論后,得出線段AT長度的取值范圍,請你求出線段AT長度的取值范圍.
【考點】四邊形綜合題.
【答案】是;等邊三角形;60°;15°
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/21 8:0:9組卷:238引用:2難度:0.3
相似題
-
1.如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E在BC的延長線上,連接DE,點F是DE的中點,連接OF交CD于點G,連接CF,若CE=4,OF=6.則下列結論:①GF=2;②OD=
OG;③tan∠CDE=2;④∠ODF=∠OCF=90°;⑤點D到CF的距離為12.其中正確的結論是( ?。?/h2>855發(fā)布:2024/12/19 5:30:4組卷:1541引用:8難度:0.4 -
2.如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s,連接PQ,設運動的時間為t(單位:s)(0≤t≤4).解答下列問題:
(1)當t為何值時,PQ∥BC.
(2)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時t的值;若不存在,請說明理由.
(3)如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.發(fā)布:2024/12/2 8:0:1組卷:866引用:2難度:0.1 -
3.如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s,連接PQ,設運動的時間為t(單位:s)(0≤t≤4).解答下列問題:
(1)當t為何值時,PQ∥BC.
(2)設四邊形BCQP的面積為S(單位:cm 2),求s與t之間的函數(shù)關系式.
(3)如圖2把△APQ沿AP翻折,得到四邊形AQPQ′那么是否存在某時刻t使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.發(fā)布:2024/12/2 8:0:1組卷:290引用:2難度:0.5
把好題分享給你的好友吧~~