為了解決一些較為復(fù)雜的數(shù)學(xué)問題,我們常常采用從特殊到一般的思想,先從特殊的情形入手,從中找到解決問題的方法,已知四邊形ABCD是⊙O的內(nèi)接四邊形,對角線AC與BD相交于點F.
【特殊情形】
(1)如圖①,AC⊥BD,過圓心O作OE⊥CD,垂足為E.當BD是⊙O的直徑時,求證:OE=12AB;
【一般情形】
(2)如圖②,AC⊥BD,過圓心O作OE⊥CD,垂足為E,當BD不是⊙O的直徑時,求證:OE=12AB;
【經(jīng)驗遷移】
(3)如圖③,∠DFC=45°,CD=10,E為劣弧BC上的一點,CE=AB,若H為DE的中點,連接CH,則∠DCE的度數(shù)為 135°135°,CH的最小值為 522522.
OE
=
1
2
AB
OE
=
1
2
AB
5
2
2
5
2
2
【考點】圓的綜合題.
【答案】135°;
5
2
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/10 8:0:8組卷:73引用:2難度:0.5
相似題
-
1.如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD?AB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.發(fā)布:2024/12/23 9:0:2組卷:1798引用:34難度:0.7 -
2.如圖,矩形ABCD中,AB=13,AD=6.點E是CD上的動點,以AE為直徑的⊙O與AB交于點F,過點F作FG⊥BE于點G.
(1)當E是CD的中點時:tan∠EAB的值為;
(2)在(1)的條件下,證明:FG是⊙O的切線;
(3)試探究:BE能否與⊙O相切?若能,求出此時BE的長;若不能,請說明理由.發(fā)布:2024/12/23 12:0:2組卷:639引用:5難度:0.4 -
3.在平面直角坐標系xOy中,⊙O的半徑為1,P是坐標系內(nèi)任意一點,點P到⊙O的距離SP的定義如下:若點P與圓心O重合,則SP為⊙O的半徑長;若點P與圓心O不重合,作射線OP交⊙O于點A,則SP為線段AP的長度.
圖1為點P在⊙O外的情形示意圖.
(1)若點B(1,0),C(1,1),,則SB=D(0,13)
(2)若直線y=x+b上存在點M,使得SM=2,求b的取值范圍;
(3)已知點P,Q在x軸上,R為線段PQ上任意一點.若線段PQ上存在一點T,滿足T在⊙O內(nèi)且ST≥SR,直接寫出滿足條件的線段PQ長度的最大值.發(fā)布:2024/12/23 11:0:1組卷:618引用:11難度:0.1
把好題分享給你的好友吧~~