設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.已知an+1=2Sn+2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成一個(gè)公差為dn的等差數(shù)列.
①設(shè)Tn=1d1+1d2+1d3+…+1dn(n∈N*),求Tn;
②在數(shù)列{dn}中是否存在三項(xiàng)dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列,若存在,求出這樣的三項(xiàng);若不存在,說(shuō)明理由.
1
d
1
+
1
d
2
+
1
d
3
+
…
+
1
d
n
【考點(diǎn)】數(shù)列的求和;等差數(shù)列與等比數(shù)列的綜合.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:69引用:6難度:0.1
相似題
-
1.十九世紀(jì)下半葉集合論的創(chuàng)立奠定了現(xiàn)代數(shù)學(xué)的基礎(chǔ).著名的“康托三分集”是數(shù)學(xué)理性思維的構(gòu)造產(chǎn)物,具有典型的分形特征其操作過(guò)程如下:將閉區(qū)間[0,1]均分為三段,去掉中間的區(qū)間段(
,13),記為第一次操作;再將剩下的兩個(gè)區(qū)[0,23],[13,1]分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個(gè)區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過(guò)程不斷地進(jìn)行下去,以至無(wú)窮,剩下的區(qū)間集合即是“康托三分集”.若使去掉的各區(qū)間長(zhǎng)度之和不小于23,則需要操作的次數(shù)n的最小值為( ?。▍⒖紨?shù)據(jù):lg2=0.3010,lg3=0.4771)910A.4 B.5 C.6 D.7 發(fā)布:2024/12/29 13:30:1組卷:141引用:17難度:0.6 -
2.定義
為n個(gè)正數(shù)p1,p2,…,pn的“均倒數(shù)”.若已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”np1+p2+…+pn,又bn=13n+1,則an+26+1b1b2+…+1b2b3=( ?。?/h2>1b9b10A. 111B. 1011C. 910D. 1112發(fā)布:2024/12/29 11:30:2組卷:112引用:1難度:0.7 -
3.設(shè)數(shù)列{an}的前n項(xiàng)和是Sn,令
,稱(chēng)Tn為數(shù)列a1,a2,…,an的“超越數(shù)”,已知數(shù)列a1,a2,…,a504的“超越數(shù)”為2020,則數(shù)列5,a1,a2,…,a504的“超越數(shù)”為( ?。?/h2>Tn=S1+S2+?+SnnA.2018 B.2019 C.2020 D.2021 發(fā)布:2024/12/29 9:0:1組卷:127引用:3難度:0.5