十九世紀(jì)下半葉集合論的創(chuàng)立奠定了現(xiàn)代數(shù)學(xué)的基礎(chǔ).著名的“康托三分集”是數(shù)學(xué)理性思維的構(gòu)造產(chǎn)物,具有典型的分形特征其操作過(guò)程如下:將閉區(qū)間[0,1]均分為三段,去掉中間的區(qū)間段(13,23),記為第一次操作;再將剩下的兩個(gè)區(qū)[0,13],[23,1]分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個(gè)區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過(guò)程不斷地進(jìn)行下去,以至無(wú)窮,剩下的區(qū)間集合即是“康托三分集”.若使去掉的各區(qū)間長(zhǎng)度之和不小于910,則需要操作的次數(shù)n的最小值為( ?。▍⒖紨?shù)據(jù):lg2=0.3010,lg3=0.4771)
1
3
2
3
1
3
2
3
9
10
【考點(diǎn)】數(shù)列的求和.
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:141引用:17難度:0.6
相似題
-
1.求值:1-3+5-7+9-11+?+2021-2023+2025=( )
發(fā)布:2024/12/17 21:30:1組卷:63引用:1難度:0.8 -
2.已知數(shù)列{an}中,對(duì)任意n∈N*,a1+a2+a3+…+an=3n-1,則
+a21+a22+…+a23=( ?。?/h2>a2n發(fā)布:2024/12/15 16:30:6組卷:87引用:1難度:0.6 -
3.數(shù)列{an}滿(mǎn)足a1=
,an+1=2an,數(shù)列12的前n項(xiàng)積為T(mén)n,則T5=( ){1an}發(fā)布:2024/12/18 2:30:2組卷:107引用:3難度:0.7
把好題分享給你的好友吧~~