在數學中,有許多關系都是在不經意間被發(fā)現的,請認真觀察圖形,解答下列問題:
(1)如圖1,用兩種不同的方法表示陰影圖形的面積,得到一個等量關系:a2+b2=(a+b)2-2aba2+b2=(a+b)2-2ab.
(2)如圖1中,a,b滿足a+b=9,ab=15,求a2+b2的值.
(3)如圖2,點C在線段AB上,以AC,BC為邊向兩邊作正方形,AC+BC=14,兩正方形的面積分別為S1,S2,且S1+S2=40,求圖中陰影部分面積.
【考點】因式分解的應用;完全平方公式的幾何背景.
【答案】a2+b2=(a+b)2-2ab
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/8 8:0:10組卷:109難度:0.5
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現錯誤?請寫出該步的代號:;
(2)錯誤的原因為:;
(3)本題正確的結論為:.發(fā)布:2024/12/23 18:0:1組卷:2511引用:25難度:0.6 -
2.閱讀理解:
能被7(或11或13)整除的特征:如果一個自然數末三位所表示的數與末三位以前的數字所表示的數之差(大數減小數)是7(或11或13)的倍數,則這個數就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗證67822615是7的倍數(寫明驗證過程);
(2)若對任意一個七位數,末三位所表示的數與末三位以前的數字所表示的數之差(大數減小數)是11的倍數,證明這個七位數一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4 -
3.若a是整數,則a2+a一定能被下列哪個數整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6