試卷征集
加入會員
操作視頻

小波在復(fù)習(xí)時,遇到一個課本上的問題,溫故后進(jìn)行了操作、推理與拓展.
菁優(yōu)網(wǎng)
(1)溫故:如圖1,在△ABC中,AD⊥BC于點D,正方形PQMN的邊QM在BC上,頂點P,N分別在AB,AC上,且
PN
BC
+
MN
AD
=
1
.若BC=6,AD=4,則正方形PQMN的邊長等于
12
5
12
5
;
(2)操作:能畫出這類正方形嗎?小波按數(shù)學(xué)家波利亞在《怎樣解題》中的方法進(jìn)行操作:如圖2,任意畫△ABC,在AB上任取一點P',畫正方形P'Q'M'N',使Q',M'在BC邊上,N'在△ABC內(nèi),連結(jié)BN'并延長交AC于點N,畫NM⊥BC于點M,NP⊥NM交AB于點P,PQ⊥BC于點Q,得到四邊形PQMN;
(3)推理:如圖3,若點E是BN的中點,求證:EP=EQ;
(4)拓展:在(2)的條件下,射線BN上截取NE=NM,連結(jié)EQ,EM(如圖4).當(dāng)∠NBM=30°時,猜想∠QEM的度數(shù),并嘗試證明.
請幫助小波解決“溫故”、“推理”、“拓展”中的問題.

【考點】相似形綜合題
【答案】
12
5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:93引用:3難度:0.3
相似題
  • 菁優(yōu)網(wǎng)1.如圖1,Rt△ABC中,AC=6cm,BC=8cm,點P以2cm/s的速度從A處沿AB方向勻速運動,點Q以1cm/s的速度從C處沿CA方向勻速運動.連接PQ,若設(shè)運動的時間為t(s)(0<t<5).解答下列問題:
    (1)當(dāng)t為何值時,△APQ與△ABC相似?
    (2)設(shè)四邊形BCQP的面積為y,求出y與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,y的值最小,寫出最小值;
    (3)如圖2,將△APQ沿AP翻折,使點Q落在Q′處,連接AQ′,PQ′,若四邊形AQPQ′是平行四邊形,求t的值.

    發(fā)布:2024/12/2 8:0:1組卷:105引用:2難度:0.5
  • 2.在△ABC中,∠C=90°,AC=6cm,BC=8cm.
    菁優(yōu)網(wǎng)
    (1)求AB的長;
    (2)如圖1,點P從A點出發(fā)以每秒2cm的速度沿AB方向勻速運動,同時點Q從C點出發(fā)以每秒1cm的速度沿CA方向勻速運動.連接PQ,若設(shè)運動的時間為t秒(0<t<5).
    ①當(dāng)t為何值時,以A、P、Q為頂點的三角形和以A、B、C為頂點的三角形相似;
    ②設(shè)四邊形BCQP的面積為y,求y的最小值;
    ③如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′,當(dāng)t為何值時,四邊形AQPQ′為平行四邊形.

    發(fā)布:2024/12/2 8:0:1組卷:241引用:1難度:0.3
  • 3.如圖1,已知△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/秒,連接PQ,設(shè)運動的時間為t秒(0≤t≤4)
    (1)求△ABC的面積;
    (2)當(dāng)t為何值時,PQ∥BC;
    (3)當(dāng)t為何值時,△AQP面積為S=6cm2
    (4)如圖2,把△AQP翻折,得到四邊形AQPQ′能否為菱形?若能,求出菱形的周長;若不能,請說明理由.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/12/2 8:0:1組卷:91引用:1難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正