已知函數(shù)f(x)=12x2+alnx,g(x)=(a+1)x,a≠-1.
(Ⅰ)若函數(shù)f(x),g(x)在區(qū)間[1,3]上都是單調(diào)函數(shù)且它們的單調(diào)性相同,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若a∈(1,e](e=2.71828…),設(shè)F(x)=f(x)-g(x),求證:當(dāng)x1,x2∈[1,a]時,不等式|F(x1)-F(x2)|<1成立.
1
2
【考點(diǎn)】數(shù)列與不等式的綜合;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:259引用:15難度:0.1
相似題
-
1.已知等比數(shù)列a1,a2,…,a9各項為正且公比q≠1,則( ?。?/h2>
發(fā)布:2024/11/25 22:30:1組卷:33引用:2難度:0.8 -
2.古印度數(shù)學(xué)家婆什伽羅在《麗拉沃蒂》一書中提出如下問題:某人給一個人布施,初日施2子安貝(古印度貨幣單位),以后逐日倍增,問一月共施幾何?在這個問題中,以一個月31天計算,記此人第n日布施了an子安貝(其中1≤n≤31,n∈N*),數(shù)列{an}的前n項和為Sn.若關(guān)于n的不等式
恒成立,則實(shí)數(shù)t的取值范圍為( )Sn-62<a2n+1-tan+1發(fā)布:2024/12/9 14:30:1組卷:51引用:3難度:0.6 -
3.已知等比數(shù)列{an}的前n項和為Sn,
,則使得不等式Sn+1+1=4an(n∈N*)成立的正整數(shù)m的最大值為( ?。?/h2>am+am+1+…+am+k-am+1Sk<2023(k∈N*)發(fā)布:2024/12/7 11:0:2組卷:198引用:4難度:0.5
把好題分享給你的好友吧~~