2022-2023學年山東省德州市高三(上)期中數(shù)學試卷
發(fā)布:2024/8/24 1:0:8
一、選擇題(本大題共8個小題,每小題5分,共40分,在每小題給出的四個選項中,只有一項是符合要求的)
-
1.已知非空集合A,B,A={x|x2-5x+4≥0},B={x|2-a<x<2+a},若A∩B=?,則實數(shù)a的取值范圍為( )
組卷:7引用:2難度:0.7 -
2.已知a,b∈R,則“
”是“2a<2b”的( )a13<b13組卷:3引用:2難度:0.7 -
3.已知cosθ+sin(θ+?
)=1,則sin(θ+?π6)=( ?。?/h2>π3組卷:210引用:2難度:0.7 -
4.意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,?,從第三項起,每個數(shù)等于它前面兩個數(shù)的和,即an+2=an+1+an(n∈N*),后來人們把這樣的一列數(shù)組成的數(shù)列{an}稱為“斐波那契數(shù)列”.記a2023=m,則a2+a4+a6+?+a2022=( ?。?/h2>
組卷:118引用:4難度:0.7 -
5.設D為△ABC所在平面內(nèi)一點,
,則( ?。?/h2>DC=3BC組卷:67引用:5難度:0.7 -
6.某函數(shù)在(0,+∞)上的部分圖象如圖,則函數(shù)解析式可能為( ?。?/h2>
組卷:8引用:3難度:0.6 -
7.已知某品牌手機電池充滿時的電量為4000(單位:毫安時),且在待機狀態(tài)下有兩種不同的耗電模式可供選擇.模式A:電量呈線性衰減,每小時耗電400(單位:毫安時);模式B:電量呈指數(shù)衰減,即從當前時刻算起,t小時后的電量為當前電量的
倍.現(xiàn)使該電子產(chǎn)品處于滿電量待機狀態(tài)時開啟A模式,并在x小時后,切換為B模式,若使且在待機10小時后有超過2.5%的電量,則x的可能取值為( ?。?/h2>12t組卷:7引用:2難度:0.6
四、解答題(本題共6小題,共70分.)
-
21.已知數(shù)列{an}的前n項和為Sn,且滿足a1=2,Sn=
-n,數(shù)列{bn}滿足b1+22b2+32b3+?+n2bn=n.32an
(1)求數(shù)列{an},{bn}的通項公式;
(2)設數(shù)列的前n項和為Tn,求證:Tn<{(n+1)bn+2[log3(an+1)]2}.516組卷:15引用:2難度:0.4 -
22.已知函數(shù)f(x)=
-2lnx+(2a-3)x.32ax2
(1)求f(x)在(0,1]的最小值;
(2)若方程f(x)=k有兩個不同的解x1,x2,且x1,x0,x2成等差數(shù)列,試探究f'(x0)值的符號.組卷:91引用:5難度:0.3