概念學習
規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.
從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.
理解概念
(1)如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,請寫出圖中兩對“等角三角形”.
概念應(yīng)用
(2)如圖2,在△ABC中,CD為角平分線,∠A=40°,∠B=60°.
求證:CD為△ABC的等角分割線.
(3)在△ABC中,∠A=42°,CD是△ABC的等角分割線,直接寫出∠ACB的度數(shù).
【考點】三角形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2372引用:25難度:0.1
相似題
-
1.為了探索代數(shù)式
x2+1的最小值,小張巧妙的運用了數(shù)學思想,具體方法是這樣的:+(8-x)2+25
如圖,C為線段BD上一動點,分別過點B,D作AB⊥BD,ED⊥BD,連接AC,EC,已知AB=1,DE=5,BD=8,設(shè)BC=x,則AC=,CE=x2+1,則問題即轉(zhuǎn)化成求AC+CE的最小值.(8-x)2+25
(1)我們知道當A,C,E在同一直線上時,AC+CE的值最小,于是可求得x2+1的最小值等于;+(8-x)2+25
(2)題中“小張巧妙的運用了數(shù)學思想”是指哪種主要的數(shù)學思想?(選填:函數(shù)思想,分類討論思想,類比思想,數(shù)形結(jié)合思想)
(3)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式x2+4的最小值.+(12-x)2+9發(fā)布:2024/11/23 8:0:1組卷:440引用:2難度:0.3 -
2.(1)問題發(fā)現(xiàn):小紅在數(shù)學課上學習了外角的相關(guān)知識后,她很容易地證明了三角形外角的性質(zhì),即三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,于是,愛思考的小紅在想,四邊形的外角是否也具有類似的性質(zhì)呢?
如圖①,∠1,∠2是四邊形ABCD的兩個外角.
∵四邊形ABCD的內(nèi)角和是360°,
∴∠A+∠C+(∠3+∠4)=360°,
又∵∠1+∠3+∠2+∠4=360°,
由此可得∠1,∠2與∠A,∠D的數(shù)量關(guān)系是 ;
(2)總結(jié)歸納:如果我們把∠1,∠2稱為四邊形的外角,那么請你用文字描述上述的關(guān)系式;
(3)知識應(yīng)用:如圖②,已知四邊形ABCD,AE,DE分別是其外角∠NAD和∠MDA的平分線,若∠B+∠C=230°,求∠E的度數(shù);
(4)拓展提升:如圖③,四邊形ABCD中,∠A=∠C=90°,∠CDN和∠CBM是它的兩個外角,且∠CDP=∠CDN,∠CBP=13∠CBM,求∠P的度數(shù).13發(fā)布:2024/11/22 8:0:1組卷:93引用:1難度:0.5 -
3.如圖,平面直角坐標系中,點A,C分別在y軸,x軸的負半軸上,∠ACB=90°,且AC=BC.BC交y軸于點D、AB交x軸于點E,若AD平分∠BAC,則線段AD,OC,OD之間的數(shù)量關(guān)系是 .
發(fā)布:2024/12/13 20:30:3組卷:344引用:2難度:0.3
把好題分享給你的好友吧~~