先閱讀下列材料,再解答下列問題:
材料:因式分解:(x-y)2+2(x-y)+1.
解:將“x-y”看成整體,令x-y-A,則原式=A2+2A+1=(A+1)2.
再將“A”還原,得:原式=(x-y+1)2.
上述解題用到的是“整體思想”,整體思想是數(shù)學(xué)解題中常用的一種思想方法,請你解下列問題:
(1)因式分解:16+8(x-y)+(x-y)2.
(2)因式分解:(a+b)(a+b-6)+9.
(3)因式分解:(x2+4x+8)2+3x(x2+4x+8)+2x2.
(4)證明:若n為正整數(shù),則式子(n+1)(n+3)(n+5)(n+7)+16的值一定是某一個整數(shù)的平方.
【考點】因式分解的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:65引用:1難度:0.6
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:;
(2)錯誤的原因為:;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2517引用:25難度:0.6 -
2.閱讀理解:
能被7(或11或13)整除的特征:如果一個自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗證67822615是7的倍數(shù)(寫明驗證過程);
(2)若對任意一個七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4 -
3.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:387引用:7難度:0.6