若函數(shù)f(x)=x2-x(x>0) -x2-x(x<0)
若f(a)<f(-a),則實(shí)數(shù)a的取值范圍是( )
f
(
x
)
=
x 2 - x ( x > 0 ) |
- x 2 - x ( x < 0 ) |
若
f
(
a
)
<
f
(
-
a
)
【考點(diǎn)】分段函數(shù)的應(yīng)用.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/17 9:0:1組卷:130引用:4難度:0.5
相似題
-
1.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
稱為狄利克雷函數(shù),關(guān)于函數(shù)f(x)有以下四個(gè)命題:1,x∈Q0,x∈?RQ
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的序號(hào)為.(寫出所有正確命題的序號(hào))發(fā)布:2024/12/22 8:0:1組卷:22引用:2難度:0.5 -
2.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=e-x(x-1).則下列結(jié)論正確的是( ?。?/h2>
發(fā)布:2024/12/20 4:30:1組卷:295引用:9難度:0.5 -
3.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
被稱為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個(gè)命題:1,x∈Q0,x∈?RQ
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的個(gè)數(shù)是( )發(fā)布:2024/12/22 8:0:1組卷:58引用:4難度:0.7
把好題分享給你的好友吧~~